A Multivariate Discretization Method for Learning Bayesian Networks from Mixed Data

نویسندگان

  • Stefano Monti
  • Gregory F. Cooper
چکیده

In this paper we address the problem of discretization in the context of learning Bayesian networks (BNs) from data con­ taining both continuous and discrete vari­ ables. We describe a new technique for multivariate discretization, whereby each continuous variable is discretized while tak­ ing into account its interaction with the other variables. The technique is based on the use of a Bayesian scoring metric that scores the discretization policy for a con­ tinuous variable given a BN structure and the observed data. Since the metric is rel­ ative to the BN structure currently being evaluated, the discretization of a variable needs to be dynamically adjusted as the BN structure changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Naive Bayesian Classifiers for Mixed-Mode Data

Conventional Bayesian networks often require discretization of continuous variables prior to learning. It is important to investigate Bayesian networks allowing mixed-mode data, in order to better represent data distributions as well as to avoid the overfitting problem. However, this attempt imposes potential restrictions to a network construction algorithm, since certain dependency has not bee...

متن کامل

Discretizing Continuous Attributes While Learning Bayesian Networks

We introduce a method for learning Bayesian networks that handles the discretization of continuous variables as an integral part of the learning process. The main ingredient in this method is a new metric based on the Minimal Description Length principle for choosing the threshold values for the discretization while learning the Bayesian network structure. This score balances the complexity of ...

متن کامل

Multivariate Cluster-Based Discretization for Bayesian Network Structure Learning

While there exist many efficient algorithms in the literature for learning Bayesian networks with discrete random variables, learning when some variables are discrete and others are continuous is still an issue. A common way to tackle this problem is to preprocess datasets by first discretizing continuous variables and, then, resorting to classical discrete variable-based learning algorithms. H...

متن کامل

Learning Discrete Bayesian Networks from Continuous Data

Real data often contains a mixture of discrete and continuous variables, but many Bayesian network structure learning and inference algorithms assume all random variables are discrete. Continuous variables are often discretized, but the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998